当前位置: 首页 >> 科学研究 >> 学术交流 >> 学术报告 >> 正文

理学院青年学术论坛第200期——Long-time asymptotics and modulational instability of the focusing Kundu-Eckhaus equation with nonzero boundary conditions

发布者: [发表时间]:2019-04-08 [来源]: [浏览次数]:

报告人:王灯山教授  北京信息科技大学

主持人:黄际政

报告时间:2019年4月16号(周二)下午16:00-17:00

报告地点:主楼804会议室

报告摘要:

The long-time asymptotics of the focusing Kundu-Eckhaus equation with nonzero boundary conditions at infinity is investigated by the nonlinear steepest descent method of Deift and Zhou. Three asymptotic sectors in space-time plane are found: the plane wave sector I, plane wave sector II and an intermediate sector with a modulated one-phase elliptic wave. The asymptotic solutions of the three sectors are proposed by successively deforming the corresponding Riemann-Hilbert problems to solvable model problems. Moreover, a time-dependent g-function mechanism is introduced to remove the exponential growths of the jump matrices in the modulated one-phase elliptic wave sector. Finally, the modulational instability is studied to reveal the criterion for the existence of modulated elliptic waves in the central region.

报告人介绍:

王灯山,北京信息科技大学理学院教授,山东科技大学兼职博士生导师;瑞典皇家工学院博士后,曾先后到美国佛蒙特大学、杜克大学、中佛罗里达大学、南佛罗里达大学、加拿大多伦多大学等高校进行学术访问。主要从事数学物理、可积系统和玻色-爱因斯坦凝聚等方面的研究。目前已发表SCI论文70余篇,其中5篇论文入选ESI高被引论文;曾主持国家自然科学基金面上项目等国家级项目3项,主持北京市自然科学基金等省部级项目7项;曾入选北京市“科技新星”计划、北京市“高创计划”青年拔尖人才和北京市“长城学者”计划。